01 - Laplace Transform for Process Control
Completion requirements
4. Laplace Transform of Common Functions
Function | \(\boldsymbol{f(t)}\) | \(\boldsymbol{F(s)}\) |
---|---|---|
Constant | \(a\) | \(\dfrac{a}{s}\) |
Ramp | \(at\) | \(\dfrac{a}{s^2}\) |
\(t^n\) | \(\dfrac{n!}{s^{n+1}}\) | |
Exponential | \(e^{-at}\) | \(\dfrac{1}{s+a}\) |
\(e^{at}\) | \(\dfrac{1}{s-a}\) | |
\(t^n e^{-at}\) | \(\dfrac{n!}{(s+a)^{n+1}}\) | |
Function | \(\boldsymbol{f(t)}\) | \(\boldsymbol{F(s)}\) |
---|---|---|
Sinusoidal | \(\sin(\omega t)\) | \(\dfrac{\omega}{s^2+\omega^2}\) |
\(\cos(\omega t)\) | \(\dfrac{s}{s^2+\omega^2}\) | |
Sin with exponential | \(e^{-at}\sin(\omega t)\) | \(\dfrac{\omega}{(s+a)^2+\omega^2}\) |
\(e^{-at}\cos(\omega t)\) | \(\dfrac{s+a}{(s+a)^2+\omega^2}\) | |
Hyperbolic | \(\sinh(\omega t)\) | \(\dfrac{\omega}{s^2-\omega^2}\) |
\(\cosh(\omega t)\) | \(\dfrac{s}{s^2-\omega^2}\) | |
Function | \(\boldsymbol{f(t)}\) | \(\boldsymbol{F(s)}\) |
---|---|---|
Dead time | \(f(t - t_o)\) | \(e^{-st_o}F(s)\) |
Impulse | \(\delta(t)\) | 1 |
Rectangular pulse | \(f(t) = \left\{\begin{array}{ll} 0 & t<0 \\ A & 0 < t < T \\ 0 & t>T \end{array} \right.\) | \(\frac{A}{s}\left(1-e^{-sT}\right)\) |