07 - PID Controller
Completion requirements
3. Proportional Controller
\[c(t) = c_s + K_c\epsilon(t)\] where
\(c\) | = | output signal from controller, psig or mA |
\(c_s\) | = | steady state output from controller, the bias value |
\(K_c\) | = | proportional gain |
\(\epsilon\) | = | error = setpoint \(-\) measured variable |
In terms of deviation variable \(C=c-c_s\), we have, \[C(t) = K_c\epsilon(t)\] Taking Laplace
transform, \[C(s) = K_c\epsilon(s) \qquad
\Longrightarrow \quad \frac{C(s)}{\epsilon(s)}=K_c = G_c(s)\]
The controller output will saturate (level out) at \(c_{\text{max}}\) = 15 psig or 20 mA at the upper end and at \(c_{\text{min}}\) = 3 psig or 4 mA at the lower end of the output.