Vapor Pressure
The pressure at which a liquid will boil is called its vapor pressure. This pressure is a function of temperature (vapor pressure increases with temperature). In this context we usually think about the temperature at which boiling occurs. For example, water boils at 100oC at sea-level atmospheric pressure (1 atm abs). However, in terms of vapor pressure, we can say that by increasing the temperature of water at sea level to 100 oC, we increase the vapor pressure to the point at which it is equal to the atmospheric pressure (1 atm abs), so that boiling occurs. It is easy to visualize that boiling can also occur in water at temperatures much below 100oC if the pressure in the water is reduced to its vapor pressure. For example, the vapor pressure of water at 10oC is 0.01 atm. Therefore, if the pressure within water at that temperature is reduced to that value, the water boils. Such boiling often occurs in flowing liquids, such as on the suction side of a pump. When such boiling does occur in the flowing liquids, vapor bubbles start growing in local regions of very low pressure and then collapse in regions of high downstream pressure. This phenomenon is called as cavitation.