Topic outline

    • Course Summary: Show more...
      Enrol me in this course
    • Couganowr3E-5-3
      A tank having a cross-sectional area of 2 ft2 is operating at steady state with an inlet flow rate of 2 ft3/min. The head-flow characteristics are shown in figure.

      1. Obtain the values of \(\tau_p\) and \(K_p\) of the transfer function of the system written as \[ \frac{H(s)}{Q_{\text{in}}(s)} = \frac{K_p}{\tau_p s + 1}\] (i)\(\tau_p =\)________ min
        (ii) \(K_p = \)_______ min/ft2
      2. If the flow to the tank increases from 2 to 2.2 ft3/min according to a step change, calculate the \(h\) two minutes after the change occurs. ______ ft
      Enrol me in this course
    • Level System with Constant Outflow Page
      Not available unless: You are a(n) Student
    • Response of Thermocouple for Step Input Page
      Not available unless: You are a(n) Student
    • Transfer Function of CSTR with First Order Reaction Page
      Coughanowr3E-5-5
      Consider the stirred-tank reactor shown in figure. The reaction occurring is \(A \rightarrow B\) and it proceeds at a rate \(r = kC_o\) where \(r\) = (moles of \(A\) reacting)/(volume.time); \(k\) = reaction rate constant; \(C_o(t)\) = concentration of \(A\) in reactor at any time \(t\) (mol \(A\)/volume); \(V\) = volume of mixture in reactor. Further, let \(F\) = constant feed rate, volume/time; \(C_i(t)\) = concentration of \(A\) in feed stream, moles/volume.

      Assuming constant density and constant volume \(V\), derive the transfer function relating the concentration of \(A\) in the reactor to the feed-stream concentration.
      Enrol me in this course
      Not available unless: You are a(n) Student
    • Transfer Function for Liquid Level vs. Inlet Flow Page
      Not available unless: You are a(n) Student
    • Transfer Function for Level vs. Flow in a Distillation Tray Page
      Not available unless: You are a(n) Student
    • Transfer Function for Liquid vs. Feed Compositions of Flash Drum Page
      Not available unless: You are a(n) Student
    • Response of Thermometer to Step Input Page
      Not available unless: You are a(n) Student
    • Parameters of Transfer Function of Heater Page
      Not available unless: You are a(n) Student
    • Linearized Transfer Function of Level System Page
      2023-15-ctrl
      A liquid surge tank has \(F_\text{in}\) and \(F_\text{out}\) as the inlet and outlet flow rates respectively, as shown in the figure below.

      \(F_{\text{out}}\) is proportional to the square root of the liquid level \(h\). The cross-sectional area of the tank is 20 cm2. Density of the liquid is constant everywhere in the system. At steady state, \(F_\text{in} = F_\text{out} = 10\) cm3/s and \(h = 16\) cm. The variation of \(h\) with \(F_\text{in}\) is approximated as a first order transfer function. Which one of the following is the CORRECT value of the time constant (in seconds) of this system? _____ (20 / 32 / 64 / 128)
      Enrol me in this course
      Not available unless: You are a(n) Student
    • Response of Second Order System to Step Input Page
      Not available unless: You are a(n) Student
    • Parameters of Second Order System from Step Response Page
      Not available unless: You are a(n) Student
    • Response of Two-Tanks System for Impulse Input Page
      Coughanowr3E-7-2
      The two-tank system shown in figure is operating at steady state. At time \(t=0\), 10 ft3 of water is quickly added to the first tank.

      Determine the maximum deviation in level (feet) in both tanks from the ultimate steady-state values and the time at which each maximum occurs. Data: \(A_1=A_2=10\) ft2; \(R_1=0.1\) min/ft2; \(R_2=0.35\) min/ft2.
      1. Maximum deviation in level of first tank = _____ ft
      2. Time at which maximum level occurs in first tank = _____ min
      3. Maximum deviation in level of second tank = _____ ft
      4. Time at which maximum level occurs in second tank = _____ min
      Enrol me in this course
      Not available unless: You are a(n) Student
    • Linearization with Two Variables Page
      Not available unless: You are a(n) Student
    • Linearized Transfer Function of Non-interacting Tanks Page
      2019-30-ctrl
      Consider two non-interacting tanks-in-series as shown in figure. Water enters Tank 1 at \(q\) cm3/s and drains down to Tank 2 by gravity at a rate \(k\sqrt{h_1}\) (cm3/s). Similarly, water drains from Tank 2 by gravity at a rate of \(k\sqrt{h_2}\) (cm3/s) where \(h_1\) and \(h_2\) represent levels of Tank 1 and Tank 2 respectively (see figure). Drain valve constant \(k=4\) cm2.5/s and cross-sectional areas of the two tanks are \(A_1=A_2=28\) cm2.

      At steady state operation, the water inlet flow rate is \(q_{s}=16\) cm3/s. The transfer function relating the deviation variables \(H_2\) (cm) to flow rate \(Q\) (cm3/s) is,
      1. \(\dfrac{2}{(56s+1)^2}\)
      2. \(\dfrac{2}{(62s+1)^2}\)
      3. \(\dfrac{2}{(36s+1)^2}\)
      4. \(\dfrac{2}{(49s+1)^2}\)
      Enrol me in this course
      Not available unless: You are a(n) Student
    • Dynamics of Thermometer Page
      Not available unless: You are a(n) Student
    • Time Constant of Thermocouple from Initial Rate of Response Page
      2001-17-ctrl
      The hot junction of a thermocouple having a time constant \(\tau \) min is initially at room temperature of 30\(^\circ \)C. At time \(t=0\) min, it is placed in a bath held at 100\(^\circ \)C. The thermocouple is connected to a recorder which has fast dynamics. At \(t=2\) min, the hot junction is withdrawn from the bath and held in the air which is at 30\(^\circ \)C. From the recorded data, the value of \(dT/dt\) at \(t=2^+\) min is given to you. \(dT/dt = -2.5\)\(^\circ \)C/min at \(t=2^+\) min. Is this data sufficient to calculate the time constant of the thermocouple? If so, suggest a procedure for calculation of the time constant \(\tau \).
      Enrol me in this course
      Not available unless: You are a(n) Student
    • Matching the Response with Transfer Function Page
      Not available unless: You are a(n) Student
    • Approximating Pole-Zero System with Pole-Only System Page
      Not available unless: You are a(n) Student